+33 490 162 042 Call us
Facebook About us Français

Search result Filter

  • Page
  • / 12

570 pictures found

Great Flamingo (Phoenicopterus roseus) in water Camargue, FranceGreat Flamingo (Phoenicopterus roseus) in water Camargue, FranceGreat Flamingo (Phoenicopterus roseus) in water Camargue, France© Marc Homs & Pepi Compte / BiosphotoJPG - RMNon exclusive sale
2433400

2433400

Great Flamingo (Phoenicopterus roseus) in water Camargue, France

RMRight Managed

JPG

LightboxDownload low resolution image5*

Pacific reef manta ray (Manta Alfredi) French Polynesia.Pacific reef manta ray (Manta Alfredi) French Polynesia.Pacific reef manta ray (Manta Alfredi) French Polynesia.© Christopher Swann / BiosphotoJPG - RMNon exclusive sale, exclusive sale possible in France
Sale prohibited by some Agents
2156786

2156786

Pacific reef manta ray (Manta Alfredi) French Polynesia.

RMRight Managed

JPG

LightboxDownload low resolution image5*

Mouth of Whale Shark (Rhincodon typus), West Australia, Ningaloo Reef - Indian Ocean.Mouth of Whale Shark (Rhincodon typus), West Australia, Ningaloo Reef - Indian Ocean.Mouth of Whale Shark (Rhincodon typus), West Australia, Ningaloo Reef - Indian Ocean.© Jeffrey Rotman / BiosphotoJPG - RMNon exclusive sale, exclusive sale possible in France
2118658

2118658

Mouth of Whale Shark (Rhincodon typus), West Australia, Ningaloo

RMRight Managed

JPG

LightboxDownload low resolution image5*

Mouth of a Whale Shark sifting plankton - Gulf of CaliforniaMouth of a Whale Shark sifting plankton - Gulf of CaliforniaMouth of a Whale Shark sifting plankton - Gulf of California© Christopher Swann / BiosphotoJPG - RMNon exclusive sale, exclusive sale possible in France
Sale prohibited by some Agents
2008396

2008396

Mouth of a Whale Shark sifting plankton - Gulf of California

RMRight Managed

JPG

LightboxDownload low resolution image5*

Chinese pond mussel (Sinanodonta woodiana) in the river Hérault, Occitanie, FranceChinese pond mussel (Sinanodonta woodiana) in the river Hérault, Occitanie, FranceChinese pond mussel (Sinanodonta woodiana) in the river Hérault, Occitanie, France© Mathieu Foulquié / BiosphotoJPG - RMSale prohibited by some Agents
2465670

2465670

Chinese pond mussel (Sinanodonta woodiana) in the river Hérault,

RMRight Managed

JPG

LightboxDownload low resolution image

Fish pond filterFish pond filterFish pond filter© Aqua Press / BiosphotoJPG - RMNon exclusive sale
2463028

2463028

Fish pond filter

RMRight Managed

JPG

LightboxDownload low resolution image

Sea squirt (Halocynthia papillosa). Hard and rough cartilaginous tunic about 6 cm in length. It is fed by filtration of the organic matter in suspension. Marine invertebrates of the Canary Islands, Tenerife.Sea squirt (Halocynthia papillosa). Hard and rough cartilaginous tunic about 6 cm in length. It is fed by filtration of the organic matter in suspension. Marine invertebrates of the Canary Islands, Tenerife.Sea squirt (Halocynthia papillosa). Hard and rough cartilaginous tunic about 6 cm in length. It is fed by filtration of the organic matter in suspension. Marine invertebrates of the Canary Islands, Tenerife.© Sergio Hanquet / BiosphotoJPG - RM
2462573

2462573

Sea squirt (Halocynthia papillosa). Hard and rough cartilaginous

RMRight Managed

JPG

LightboxDownload low resolution image

Basking shark (Cetorhinus maximus) filter feeding on plankton near the Lizard Peninsula,Basking shark (Cetorhinus maximus) filter feeding on plankton near the Lizard Peninsula,Basking shark (Cetorhinus maximus) filter feeding on plankton near the Lizard Peninsula,© Andy Murch / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by Agents
2453016

2453016

Basking shark (Cetorhinus maximus) filter feeding on plankton

RMRight Managed

JPG

LightboxDownload low resolution image

Basking shark (Cetorhinus maximus) filter feeding on plankton near the Lizard Peninsula, Cornwall, England, North Atlantic.Basking shark (Cetorhinus maximus) filter feeding on plankton near the Lizard Peninsula, Cornwall, England, North Atlantic.Basking shark (Cetorhinus maximus) filter feeding on plankton near the Lizard Peninsula, Cornwall, England, North Atlantic.© Andy Murch / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by Agents
2453015

2453015

Basking shark (Cetorhinus maximus) filter feeding on plankton

RMRight Managed

JPG

LightboxDownload low resolution image

Basking shark (Cetorhinus maximus) filter feeding on plankton near the Lizard Peninsula, Cornwall.Basking shark (Cetorhinus maximus) filter feeding on plankton near the Lizard Peninsula, Cornwall.Basking shark (Cetorhinus maximus) filter feeding on plankton near the Lizard Peninsula, Cornwall.© Andy Murch / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by Agents
2453014

2453014

Basking shark (Cetorhinus maximus) filter feeding on plankton

RMRight Managed

JPG

LightboxDownload low resolution image

Oscilum and aquifer system of a sponge, Queen's Gardens National Park, CubaOscilum and aquifer system of a sponge, Queen's Gardens National Park, CubaOscilum and aquifer system of a sponge, Queen's Gardens National Park, Cuba© Mathieu Foulquié / BiosphotoJPG - RMSale prohibited by some Agents
2448427

2448427

Oscilum and aquifer system of a sponge, Queen's Gardens National

RMRight Managed

JPG

LightboxDownload low resolution image

Preparation of a tansy extract (filtration). The purse of tansy, obtained by letting tansy leaves macerate in water for a few days, repels insect pests. It is an insect repellent product, which inhibits the development of caterpillars and other unwelcome crops.Preparation of a tansy extract (filtration). The purse of tansy, obtained by letting tansy leaves macerate in water for a few days, repels insect pests. It is an insect repellent product, which inhibits the development of caterpillars and other unwelcome crops.Preparation of a tansy extract (filtration). The purse of tansy, obtained by letting tansy leaves macerate in water for a few days, repels insect pests. It is an insect repellent product, which inhibits the development of caterpillars and other unwelcome crops.© Jean-Michel Groult / BiosphotoJPG - RM
2430983

2430983

Preparation of a tansy extract (filtration). The purse of tansy,

RMRight Managed

JPG

LightboxDownload low resolution image

Freshwater aquarium with internal filterFreshwater aquarium with internal filterFreshwater aquarium with internal filter© Aqua Press / BiosphotoJPG - RMNon exclusive sale
2424310

2424310

Freshwater aquarium with internal filter

RMRight Managed

JPG

LightboxDownload low resolution image

Mousses synthétiques pour filtre de bassinMousses synthétiques pour filtre de bassinMousses synthétiques pour filtre de bassin© Aqua Press / BiosphotoJPG - RMNon exclusive sale
2424270

2424270

Mousses synthétiques pour filtre de bassin

RMRight Managed

JPG

LightboxDownload low resolution image

Mini aquariumMini aquariumMini aquarium© Aqua Press / BiosphotoJPG - RMNon exclusive sale
2424244

2424244

Mini aquarium

RMRight Managed

JPG

LightboxDownload low resolution image

Tara Oceans Expeditions - May 2011. Silvia Gonzalez-Acinas, ICM-CSIC, ES; freshly filtered plancton is wrapped o/b Tara to be stored and cooled in liquid nitrogen for later analysis, GalapagosTara Oceans Expeditions - May 2011. Silvia Gonzalez-Acinas, ICM-CSIC, ES; freshly filtered plancton is wrapped o/b Tara to be stored and cooled in liquid nitrogen for later analysis, GalapagosTara Oceans Expeditions - May 2011. Silvia Gonzalez-Acinas, ICM-CSIC, ES; freshly filtered plancton is wrapped o/b Tara to be stored and cooled in liquid nitrogen for later analysis, Galapagos© Christoph Gerigk / BiosphotoJPG - RM
2417554

2417554

Tara Oceans Expeditions - May 2011. Silvia Gonzalez-Acinas,

RMRight Managed

JPG

LightboxDownload low resolution image

Tara Oceans Expeditions - May 2011. Silvia Gonzalez-Acinas, ICM-CSIC, ES; freshly filtered plancton is wrapped o/b Tara to be stored and cooled in liquid nitrogen for later analysis, GalapagosTara Oceans Expeditions - May 2011. Silvia Gonzalez-Acinas, ICM-CSIC, ES; freshly filtered plancton is wrapped o/b Tara to be stored and cooled in liquid nitrogen for later analysis, GalapagosTara Oceans Expeditions - May 2011. Silvia Gonzalez-Acinas, ICM-CSIC, ES; freshly filtered plancton is wrapped o/b Tara to be stored and cooled in liquid nitrogen for later analysis, Galapagos© Christoph Gerigk / BiosphotoJPG - RM
2417553

2417553

Tara Oceans Expeditions - May 2011. Silvia Gonzalez-Acinas,

RMRight Managed

JPG

LightboxDownload low resolution image

Tara Pacific expedition - november 2017 North Ema Reef, Kimbe Bay papua New Guinea, Giant Sea Fan, Gorgonian Fan Coral (Annella mollis, Syn Subergorgia mollis), Feather Stars, invertebrate filter feeders who need strong water flow, settle on the vanishing Gorgonian fan. D: 10 mTara Pacific expedition - november 2017 North Ema Reef, Kimbe Bay papua New Guinea, Giant Sea Fan, Gorgonian Fan Coral (Annella mollis, Syn Subergorgia mollis), Feather Stars, invertebrate filter feeders who need strong water flow, settle on the vanishing Gorgonian fan. D: 10 mTara Pacific expedition - november 2017 North Ema Reef, Kimbe Bay papua New Guinea, Giant Sea Fan, Gorgonian Fan Coral (Annella mollis, Syn Subergorgia mollis), Feather Stars, invertebrate filter feeders who need strong water flow, settle on the vanishing Gorgonian fan. D: 10 m© Christoph Gerigk / BiosphotoJPG - RM
2417174

2417174

Tara Pacific expedition - november 2017 North Ema Reef, Kimbe Bay

RMRight Managed

JPG

LightboxDownload low resolution image

Fluorescent coral. Acan Brain Coral, Acanthastrea sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent coral. Acan Brain Coral, Acanthastrea sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent coral. Acan Brain Coral, Acanthastrea sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. Portugal© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2408023

2408023

Fluorescent coral. Acan Brain Coral, Acanthastrea sp.. Above

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Southern giant clam, Tridacna derasa. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many animals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalSouthern giant clam, Tridacna derasa. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many animals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalSouthern giant clam, Tridacna derasa. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many animals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. Portugal© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2408022

2408022

Southern giant clam, Tridacna derasa. Above photographed with

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Fluorescent coral. Mushroom coral, Rhodactis sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many anemones and corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent coral. Mushroom coral, Rhodactis sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many anemones and corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent coral. Mushroom coral, Rhodactis sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many anemones and corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. Portugal© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2408021

2408021

Fluorescent coral. Mushroom coral, Rhodactis sp.. Above

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Fluorescent coral. Candy Cane Coral, Caulastrea furcata. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent coral. Candy Cane Coral, Caulastrea furcata. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent coral. Candy Cane Coral, Caulastrea furcata. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. Portugal© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2408020

2408020

Fluorescent coral. Candy Cane Coral, Caulastrea furcata. Above

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Fluorescent Zoanthus sp.. Left photographed with daylight and right showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals and anemones are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent Zoanthus sp.. Left photographed with daylight and right showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals and anemones are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent Zoanthus sp.. Left photographed with daylight and right showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals and anemones are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. Portugal© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2408019

2408019

Fluorescent Zoanthus sp.. Left photographed with daylight and

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Fluorescent soft coral. Button Polyp, Protopalythoa sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many anemones and corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent soft coral. Button Polyp, Protopalythoa sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many anemones and corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent soft coral. Button Polyp, Protopalythoa sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many anemones and corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. Portugal© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2408018

2408018

Fluorescent soft coral. Button Polyp, Protopalythoa sp.. Above

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Fluorescent coral. Brain coral, Trachyphyllia sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent coral. Brain coral, Trachyphyllia sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent coral. Brain coral, Trachyphyllia sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. Portugal© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2408017

2408017

Fluorescent coral. Brain coral, Trachyphyllia sp.. Above

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Fluorescent coral. Pulse coral, Xenia sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent coral. Pulse coral, Xenia sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent coral. Pulse coral, Xenia sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. Portugal© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2408016

2408016

Fluorescent coral. Pulse coral, Xenia sp.. Above photographed

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Fluorescent anemone. Mushroom Anemone, Actinodiscus sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many anemones and corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent anemone. Mushroom Anemone, Actinodiscus sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many anemones and corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent anemone. Mushroom Anemone, Actinodiscus sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many anemones and corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. Portugal© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2408015

2408015

Fluorescent anemone. Mushroom Anemone, Actinodiscus sp.. Above

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Fluorescent coral. Large-polyped Stony coral, Euphyllia paraglabrescens. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent coral. Large-polyped Stony coral, Euphyllia paraglabrescens. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent coral. Large-polyped Stony coral, Euphyllia paraglabrescens. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. Portugal© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2408014

2408014

Fluorescent coral. Large-polyped Stony coral, Euphyllia

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Fluorescent coral. Bubble coral, Plerogyra sinuosa. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent coral. Bubble coral, Plerogyra sinuosa. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent coral. Bubble coral, Plerogyra sinuosa. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. Portugal© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2408013

2408013

Fluorescent coral. Bubble coral, Plerogyra sinuosa. Above

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Fluorescent coral. Brain coral, Trachyphyllia sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent coral. Brain coral, Trachyphyllia sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent coral. Brain coral, Trachyphyllia sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. Portugal© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2408012

2408012

Fluorescent coral. Brain coral, Trachyphyllia sp.. Above

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Fluorescent coral. Candy Cane Coral, Caulastrea furcata. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent coral. Candy Cane Coral, Caulastrea furcata. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent coral. Candy Cane Coral, Caulastrea furcata. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. Portugal© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2408011

2408011

Fluorescent coral. Candy Cane Coral, Caulastrea furcata. Above

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Southern giant clam, Tridacna derasa. Left photographed with daylight and right showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many animals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalSouthern giant clam, Tridacna derasa. Left photographed with daylight and right showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many animals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalSouthern giant clam, Tridacna derasa. Left photographed with daylight and right showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many animals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. Portugal© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2408010

2408010

Southern giant clam, Tridacna derasa. Left photographed with

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Fluorescent coral. Stony Coral, Euphyllia paradivisa. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent coral. Stony Coral, Euphyllia paradivisa. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent coral. Stony Coral, Euphyllia paradivisa. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. Portugal© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2408009

2408009

Fluorescent coral. Stony Coral, Euphyllia paradivisa. Above

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Mediterranean snakelocks sea anemone, Anemonia sulcata. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many anemones and corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalMediterranean snakelocks sea anemone, Anemonia sulcata. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many anemones and corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalMediterranean snakelocks sea anemone, Anemonia sulcata. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many anemones and corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. Portugal© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2408008

2408008

Mediterranean snakelocks sea anemone, Anemonia sulcata. Above

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Fluorescent coral. Bushy Gorgonian, Rumphella sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent coral. Bushy Gorgonian, Rumphella sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. PortugalFluorescent coral. Bushy Gorgonian, Rumphella sp.. Above photographed with daylight and bellow showing fluorescent colours photographed under special blue or ultraviolet light and filter. Many corals are intensely fluorescent under certain light wavelengths. Shallow water reef-building fluorescent corals seem to be more resistant to coral bleaching than other corals, and the higher the density of fluorescent pigments, the more likely to resist. This enables them to better protect the zooxanthellae that help sustain them. The pigments that fluoresce are photoproteins, and a current theory is that this acts as a type of sunscreen that prevents too much UV light damaging the zooxanthallae. These corals have the photoproteins above the zooxanthallae to protect them. Corals that grow in deeper water, where light is scarce, are using fluorescence to absorb UV light and reflect it back to the zooxanthallae to give them more light to turn into nutrients. These corals have the photoproteins below the zooxanthallae to reflect it back. Photographed in aquarium. Portugal© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2408007

2408007

Fluorescent coral. Bushy Gorgonian, Rumphella sp.. Above

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Bell Heather, Erica cinerea, flowers. Above photographed with daylight and bellow showing fluorescent colours when photographed under ultraviolet light with a Baader-U Filter. This filter enables imaging in the deep UV spectral region. Some flowers have patterns that are only visible under ultraviolet light. Those surprising patterns can only be seen by the insects. While pollinating insects can see these patterns perfectly to find the nectar and pollen, the human eye cannot without some help of special photography. PortugalBell Heather, Erica cinerea, flowers. Above photographed with daylight and bellow showing fluorescent colours when photographed under ultraviolet light with a Baader-U Filter. This filter enables imaging in the deep UV spectral region. Some flowers have patterns that are only visible under ultraviolet light. Those surprising patterns can only be seen by the insects. While pollinating insects can see these patterns perfectly to find the nectar and pollen, the human eye cannot without some help of special photography. PortugalBell Heather, Erica cinerea, flowers. Above photographed with daylight and bellow showing fluorescent colours when photographed under ultraviolet light with a Baader-U Filter. This filter enables imaging in the deep UV spectral region. Some flowers have patterns that are only visible under ultraviolet light. Those surprising patterns can only be seen by the insects. While pollinating insects can see these patterns perfectly to find the nectar and pollen, the human eye cannot without some help of special photography. Portugal© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2408006

2408006

Bell Heather, Erica cinerea, flowers. Above photographed with

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Common golden thistle, Scolymus hispanicus, flower. Above photographed with daylight and bellow showing fluorescent colours when photographed under ultraviolet light with a Baader-U Filter. This filter enables imaging in the deep UV spectral region. Some flowers have patterns that are only visible under ultraviolet light. Those surprising patterns can only be seen by the insects. While pollinating insects can see these patterns perfectly to find the nectar and pollen, the human eye cannot without some help of special photography. PortugalCommon golden thistle, Scolymus hispanicus, flower. Above photographed with daylight and bellow showing fluorescent colours when photographed under ultraviolet light with a Baader-U Filter. This filter enables imaging in the deep UV spectral region. Some flowers have patterns that are only visible under ultraviolet light. Those surprising patterns can only be seen by the insects. While pollinating insects can see these patterns perfectly to find the nectar and pollen, the human eye cannot without some help of special photography. PortugalCommon golden thistle, Scolymus hispanicus, flower. Above photographed with daylight and bellow showing fluorescent colours when photographed under ultraviolet light with a Baader-U Filter. This filter enables imaging in the deep UV spectral region. Some flowers have patterns that are only visible under ultraviolet light. Those surprising patterns can only be seen by the insects. While pollinating insects can see these patterns perfectly to find the nectar and pollen, the human eye cannot without some help of special photography. Portugal© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2408005

2408005

Common golden thistle, Scolymus hispanicus, flower. Above

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Yellow flowers. Above photographed with daylight and bellow showing fluorescent colours when photographed under ultraviolet light with a Baader-U Filter. This filter enables imaging in the deep UV spectral region. Some flowers have patterns that are only visible under ultraviolet light. Those surprising patterns can only be seen by the insects. While pollinating insects can see these patterns perfectly to find the nectar and pollen, the human eye cannot without some help of special photography. PortugalYellow flowers. Above photographed with daylight and bellow showing fluorescent colours when photographed under ultraviolet light with a Baader-U Filter. This filter enables imaging in the deep UV spectral region. Some flowers have patterns that are only visible under ultraviolet light. Those surprising patterns can only be seen by the insects. While pollinating insects can see these patterns perfectly to find the nectar and pollen, the human eye cannot without some help of special photography. PortugalYellow flowers. Above photographed with daylight and bellow showing fluorescent colours when photographed under ultraviolet light with a Baader-U Filter. This filter enables imaging in the deep UV spectral region. Some flowers have patterns that are only visible under ultraviolet light. Those surprising patterns can only be seen by the insects. While pollinating insects can see these patterns perfectly to find the nectar and pollen, the human eye cannot without some help of special photography. Portugal© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2408004

2408004

Yellow flowers. Above photographed with daylight and bellow

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Dandelion flower. Above photographed with daylight and bellow showing fluorescent colours when photographed under ultraviolet light with a Baader-U Filter. This filter enables imaging in the deep UV spectral region. Some flowers have patterns that are only visible under ultraviolet light. Those surprising patterns can only be seen by the insects. While pollinating insects can see these patterns perfectly to find the nectar and pollen, the human eye cannot without some help of special photography. PortugalDandelion flower. Above photographed with daylight and bellow showing fluorescent colours when photographed under ultraviolet light with a Baader-U Filter. This filter enables imaging in the deep UV spectral region. Some flowers have patterns that are only visible under ultraviolet light. Those surprising patterns can only be seen by the insects. While pollinating insects can see these patterns perfectly to find the nectar and pollen, the human eye cannot without some help of special photography. PortugalDandelion flower. Above photographed with daylight and bellow showing fluorescent colours when photographed under ultraviolet light with a Baader-U Filter. This filter enables imaging in the deep UV spectral region. Some flowers have patterns that are only visible under ultraviolet light. Those surprising patterns can only be seen by the insects. While pollinating insects can see these patterns perfectly to find the nectar and pollen, the human eye cannot without some help of special photography. Portugal© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2408003

2408003

Dandelion flower. Above photographed with daylight and bellow

RMRight Managed

JPG

LightboxWarningDownload low resolution image

European lancelet, Branchiostoma lanceolatum. Showing fluorescent colours when photographed under special blue or ultraviolet light and filter. The fluorescent protein is in the same class as those found in corals and jellyfish. The mitochondrial genome of Branchiostoma lanceolatum has been sequenced, and the species serves as a model organism for studying the development of vertebrates. Aquarium photography. PortugalEuropean lancelet, Branchiostoma lanceolatum. Showing fluorescent colours when photographed under special blue or ultraviolet light and filter. The fluorescent protein is in the same class as those found in corals and jellyfish. The mitochondrial genome of Branchiostoma lanceolatum has been sequenced, and the species serves as a model organism for studying the development of vertebrates. Aquarium photography. PortugalEuropean lancelet, Branchiostoma lanceolatum. Showing fluorescent colours when photographed under special blue or ultraviolet light and filter. The fluorescent protein is in the same class as those found in corals and jellyfish. The mitochondrial genome of Branchiostoma lanceolatum has been sequenced, and the species serves as a model organism for studying the development of vertebrates. Aquarium photography. Portugal© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2407998

2407998

European lancelet, Branchiostoma lanceolatum. Showing fluorescent

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Japanese eel, Anguilla japonica. Showing fluorescent colours when photographed under special blue or ultraviolet light and filter. Its muscle fibres produce the first fluorescent protein identified in a vertebrate. It's totally different” from other fluorescent proteins. For example, instead of producing light with a chromophore that is part of the protein sequence, as the classical Green Fluorescent Protein (GFP) does, UnaG fluoresces when it binds a naturally occurring small molecule called bilirubin, a breakdown product of haemoglobin used in hospital tests for decades to assess liver function and diagnose diseases such as jaundice. Aquarium photographyJapanese eel, Anguilla japonica. Showing fluorescent colours when photographed under special blue or ultraviolet light and filter. Its muscle fibres produce the first fluorescent protein identified in a vertebrate. It's totally different” from other fluorescent proteins. For example, instead of producing light with a chromophore that is part of the protein sequence, as the classical Green Fluorescent Protein (GFP) does, UnaG fluoresces when it binds a naturally occurring small molecule called bilirubin, a breakdown product of haemoglobin used in hospital tests for decades to assess liver function and diagnose diseases such as jaundice. Aquarium photographyJapanese eel, Anguilla japonica. Showing fluorescent colours when photographed under special blue or ultraviolet light and filter. Its muscle fibres produce the first fluorescent protein identified in a vertebrate. It's totally different” from other fluorescent proteins. For example, instead of producing light with a chromophore that is part of the protein sequence, as the classical Green Fluorescent Protein (GFP) does, UnaG fluoresces when it binds a naturally occurring small molecule called bilirubin, a breakdown product of haemoglobin used in hospital tests for decades to assess liver function and diagnose diseases such as jaundice. Aquarium photography© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2407997

2407997

Japanese eel, Anguilla japonica. Showing fluorescent colours when

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Chain catshark or chain dogfish, Scyliorhinus retifer. Showing fluorescent colours when photographed under special blue or ultraviolet light and filter. Scyliorhinus retifer. Is one of four elasmobranch species shown to possess biofluorescent properties. They exhibit bright green fluorescence patterns resulting from the presence of fluorescent compounds in their skin. Catsharks possess the ability to detect the green biofluorescence that is emitted by their conspecifics and this fluorescence creates greater contrast with the surrounding habitat in deeper blue-shifted waters (under solar or lunar illumination). Aquarium photographyChain catshark or chain dogfish, Scyliorhinus retifer. Showing fluorescent colours when photographed under special blue or ultraviolet light and filter. Scyliorhinus retifer. Is one of four elasmobranch species shown to possess biofluorescent properties. They exhibit bright green fluorescence patterns resulting from the presence of fluorescent compounds in their skin. Catsharks possess the ability to detect the green biofluorescence that is emitted by their conspecifics and this fluorescence creates greater contrast with the surrounding habitat in deeper blue-shifted waters (under solar or lunar illumination). Aquarium photographyChain catshark or chain dogfish, Scyliorhinus retifer. Showing fluorescent colours when photographed under special blue or ultraviolet light and filter. Scyliorhinus retifer. Is one of four elasmobranch species shown to possess biofluorescent properties. They exhibit bright green fluorescence patterns resulting from the presence of fluorescent compounds in their skin. Catsharks possess the ability to detect the green biofluorescence that is emitted by their conspecifics and this fluorescence creates greater contrast with the surrounding habitat in deeper blue-shifted waters (under solar or lunar illumination). Aquarium photography© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2407995

2407995

Chain catshark or chain dogfish, Scyliorhinus retifer. Showing

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Chain catshark or chain dogfish, Scyliorhinus retifer. Above photographed with daylight bellown showing fluorescent colours when photographed under special blue or ultraviolet light and filter. Scyliorhinus retifer. Is one of four elasmobranch species shown to possess biofluorescent properties. They exhibit bright green fluorescence patterns resulting from the presence of fluorescent compounds in their skin. Catsharks possess the ability to detect the green biofluorescence that is emitted by their conspecifics and this fluorescence creates greater contrast with the surrounding habitat in deeper blue-shifted waters (under solar or lunar illumination). Aquarium photographyChain catshark or chain dogfish, Scyliorhinus retifer. Above photographed with daylight bellown showing fluorescent colours when photographed under special blue or ultraviolet light and filter. Scyliorhinus retifer. Is one of four elasmobranch species shown to possess biofluorescent properties. They exhibit bright green fluorescence patterns resulting from the presence of fluorescent compounds in their skin. Catsharks possess the ability to detect the green biofluorescence that is emitted by their conspecifics and this fluorescence creates greater contrast with the surrounding habitat in deeper blue-shifted waters (under solar or lunar illumination). Aquarium photographyChain catshark or chain dogfish, Scyliorhinus retifer. Above photographed with daylight bellown showing fluorescent colours when photographed under special blue or ultraviolet light and filter. Scyliorhinus retifer. Is one of four elasmobranch species shown to possess biofluorescent properties. They exhibit bright green fluorescence patterns resulting from the presence of fluorescent compounds in their skin. Catsharks possess the ability to detect the green biofluorescence that is emitted by their conspecifics and this fluorescence creates greater contrast with the surrounding habitat in deeper blue-shifted waters (under solar or lunar illumination). Aquarium photography© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2407993

2407993

Chain catshark or chain dogfish, Scyliorhinus retifer. Above

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Chain catshark or chain dogfish, Scyliorhinus retifer, resting in sand bottom. Above photographed with daylight bellow showing fluorescent colours when photographed under special blue or ultraviolet light and filter. Scyliorhinus retifer. Is one of four elasmobranch species shown to possess biofluorescent properties. They exhibit bright green fluorescence patterns resulting from the presence of fluorescent compounds in their skin. Catsharks possess the ability to detect the green biofluorescence that is emitted by their conspecifics and this fluorescence creates greater contrast with the surrounding habitat in deeper blue-shifted waters (under solar or lunar illumination). Aquarium photographyChain catshark or chain dogfish, Scyliorhinus retifer, resting in sand bottom. Above photographed with daylight bellow showing fluorescent colours when photographed under special blue or ultraviolet light and filter. Scyliorhinus retifer. Is one of four elasmobranch species shown to possess biofluorescent properties. They exhibit bright green fluorescence patterns resulting from the presence of fluorescent compounds in their skin. Catsharks possess the ability to detect the green biofluorescence that is emitted by their conspecifics and this fluorescence creates greater contrast with the surrounding habitat in deeper blue-shifted waters (under solar or lunar illumination). Aquarium photographyChain catshark or chain dogfish, Scyliorhinus retifer, resting in sand bottom. Above photographed with daylight bellow showing fluorescent colours when photographed under special blue or ultraviolet light and filter. Scyliorhinus retifer. Is one of four elasmobranch species shown to possess biofluorescent properties. They exhibit bright green fluorescence patterns resulting from the presence of fluorescent compounds in their skin. Catsharks possess the ability to detect the green biofluorescence that is emitted by their conspecifics and this fluorescence creates greater contrast with the surrounding habitat in deeper blue-shifted waters (under solar or lunar illumination). Aquarium photography© Paulo de Oliveira / BiosphotoJPG - RMNon exclusive sale
Sale prohibited by some Agents
Sale prohibited for poster and Fine art print worlwide
2407992

2407992

Chain catshark or chain dogfish, Scyliorhinus retifer, resting in

RMRight Managed

JPG

LightboxWarningDownload low resolution image

Greater Flamingo (Phoenicopterus roseus) in water, Kerkini lake, GreeceGreater Flamingo (Phoenicopterus roseus) in water, Kerkini lake, GreeceGreater Flamingo (Phoenicopterus roseus) in water, Kerkini lake, Greece© Pierre Huguet-Dubief / BiosphotoJPG - RM
2406741

2406741

Greater Flamingo (Phoenicopterus roseus) in water, Kerkini lake,

RMRight Managed

JPG

LightboxDownload low resolution image

The curd is drawn to the canvas to be molded, cheese making, tomme de montagne or Bargkas, farm inn Entzenbach, Niederbruck, Haut Rhin, FranceThe curd is drawn to the canvas to be molded, cheese making, tomme de montagne or Bargkas, farm inn Entzenbach, Niederbruck, Haut Rhin, FranceThe curd is drawn to the canvas to be molded, cheese making, tomme de montagne or Bargkas, farm inn Entzenbach, Niederbruck, Haut Rhin, France© Denis Bringard / BiosphotoJPG - RM
2401801

2401801

The curd is drawn to the canvas to be molded, cheese making,

RMRight Managed

JPG

LightboxDownload low resolution image

The curd is drawn to the canvas to be molded, cheese making, tomme de montagne or Bargkas, farm inn Entzenbach, Niederbruck, Haut Rhin, FranceThe curd is drawn to the canvas to be molded, cheese making, tomme de montagne or Bargkas, farm inn Entzenbach, Niederbruck, Haut Rhin, FranceThe curd is drawn to the canvas to be molded, cheese making, tomme de montagne or Bargkas, farm inn Entzenbach, Niederbruck, Haut Rhin, France© Denis Bringard / BiosphotoJPG - RM
2401800

2401800

The curd is drawn to the canvas to be molded, cheese making,

RMRight Managed

JPG

LightboxDownload low resolution image

The whey separated from the curd will be given to the pigs, cheese making, tomme de montagne or Bargkas, farm inn Entzenbach, Niederbruck, Haut Rhin, FranceThe whey separated from the curd will be given to the pigs, cheese making, tomme de montagne or Bargkas, farm inn Entzenbach, Niederbruck, Haut Rhin, FranceThe whey separated from the curd will be given to the pigs, cheese making, tomme de montagne or Bargkas, farm inn Entzenbach, Niederbruck, Haut Rhin, France© Denis Bringard / BiosphotoJPG - RM
2401799

2401799

The whey separated from the curd will be given to the pigs,

RMRight Managed

JPG

LightboxDownload low resolution image

Sunbeams filter through the branches of the trees and the morning fog at Aquário Natural, Bonito, Mato Grosso do Sul, BrazilSunbeams filter through the branches of the trees and the morning fog at Aquário Natural, Bonito, Mato Grosso do Sul, BrazilSunbeams filter through the branches of the trees and the morning fog at Aquário Natural, Bonito, Mato Grosso do Sul, Brazil© Franco Banfi / BiosphotoJPG - RMNon exclusive sale, exclusive sale possible in France
2399969

2399969

Sunbeams filter through the branches of the trees and the morning

RMRight Managed

JPG

LightboxDownload low resolution image

Decoction of nettles for the treatment of plants, summer, Pas de Calais, FranceDecoction of nettles for the treatment of plants, summer, Pas de Calais, FranceDecoction of nettles for the treatment of plants, summer, Pas de Calais, France© Yann Avril / BiosphotoJPG - RM
2399661

2399661

Decoction of nettles for the treatment of plants, summer, Pas de

RMRight Managed

JPG

LightboxDownload low resolution image

Next page
1 / 12

Your request is processing. Please wait...

Galleries General conditions Legal notices Photographers area





Your request has been registered.

To use this feature you must first register or login.

Log in

To organize photos in lightboxes you must first register or login. Registration is FREE! Lightboxes allow you to categorize your photos, to keep them when you sign in and send them by email.

Log in

A Biosphoto authorization has to be granted prior using this feature. We'll get in touch shortly, please check that your contact info is up to date. Feel free to contact us in case of no answer during office hours (Paris time).

Delete permanently this lightbox?

Delete permanently all items?



The lightbox has been duplicated

The lightbox has been copied in your personal account

Your request has been registered. You will receive an e-mail shortly in order to download your images.

You can insert a comment that will appear within your downloads reports.





Your album has been sent.

In case of modification, changes will be seen by your recipient.

If deleted, your album won't be avalaible for your recipient anymore.